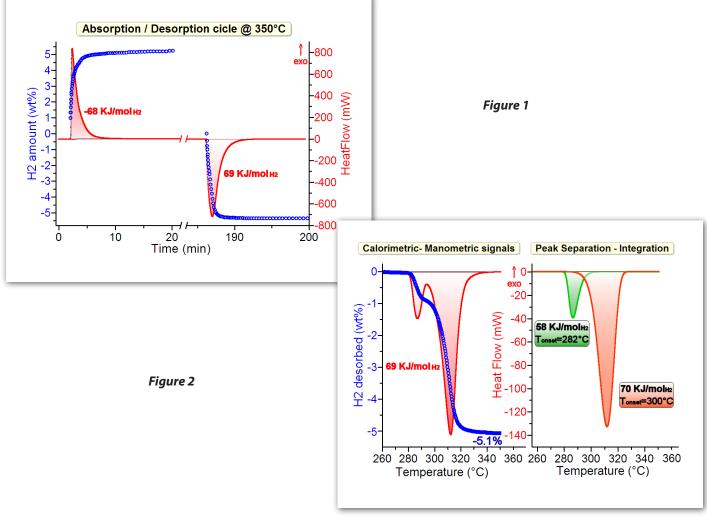


Coupled manometric – calorimetric measurements on Mg-based materials for H2 storage

INTRODUCTION

In recent years, increased efforts are under way to develop materials with reversible H₂ storage properties meeting the targets for on-board applications fixed by the US Department of Energy. With this respect, it is fundamental to evaluate with accuracy both the thermodynamic and the kinetics sorption properties of the candidate materials. On the analytical point of view, the coupling between a manometric technique (GASPRO) and a calorimetric technique (CALVET PRO DSC) is very interesting as both the absorbed/desorbed volume of hydrogen together with the corresponding enthalpy is measured on the same sample.

EXPERIMENT


About 30 mg of Mg 80.75 wt% – Ni 14.25 wt % – C 5 wt% composite prepared by mechanical milling were charged in the high-pressure cell of the CALVET PRO DSC under Ar in the glove box.

The cell was introduced in the CALVET PRO DSC furnace and directly connected to the GASPRO using a 1/8" Swagelok tube.

The sample was activated by 10 charging/discharging runs at 350 $^{\circ}$ C and H₂ pressure equal to 15 bar/0.9 bar (Figure 1).

Subsequently it was re-charged at 15 bar and 350 °C and cooled down to 200 °C at 10 °C/min before a TPD measurement was performed by heating at 2 °C/min up to 350 °C under H₂ pressure equal to 0.9 bar (Figure 2). The volumetric and calorimetric data that are shown on figures 1 and 2 are obtained simultaneously on the same sample.

Data acquisition and treatment are obtained via the Calisto software.

RESULTS AND CONCLUSION

At the end of the activation procedure (Figure 1), the sample reversibly exchanges 5.4 wt % H₂, i.e. a value higher than the DOE target for 2010 (4.5 wt %). Up to 5 wt % H₂ is absorbed/released in 2 min/4min respectively. The hydrogenation/dehydrogenation enthalpy values (-68 kJ/mol H₂ and + 69 kJ/mol H₂ respectively) are very close and lower than the value obtained for pure MgH₂ (74.5 kJ/mol H₂). Two desorption steps can be distinguished in the TPD profile (Figure 2), the low temperature one (282 °C) due to the dehydrogenation of Mg2NiH4, the high temperature one (300 °C) attributable to MgH₂ dissociation. The desorption enthalpy values obtained by the deconvolution of the peaks (58 kJ/mol H₂ and 70 kJ/mol H₂) are once again well lower than the data reported in literature for the pure compounds dehydrogenation (64.5 kJ/mol H₂ and 74.5 kJ/mol H₂ respectively). The integration of the whole signal gives a value equal to that obtained in isothermal conditions (Figure 1). All these data underlines the good destabilizing effect played by C towards the Mg/MgH₂ and the Mg₂Ni/Mg₂NiH₄ systems.

Reference: C. Milanese, A. Girella, A. Marini, H2 Lab, Department of Physical Chemistry, University of Pavia, Viale Taramelli 16, I-27100 Pavia, Italy

- E. Wirth, Setaram Instrumentation, 7, Rue de l'Oratoire 69300 Caluire France
- C. Milanese et al., Int. J Hydrogen Energy, in press. doi: 10.1016/j.ijhydene.2009.11.057.

VARIETY OF MODES OF OPERATION

ability to combine PCT, kinetics and cycle life modes to 200bar to determine the quantity and rate of sample gas interaction and its aging characteristics all in one instrument and operation

- PRECISION MEASUREMENT OF SMALL SAMPLES using the patented microdoser option to inject small doses of gas on the sample
 - HIGH ACCURACY VERSION to reduce cumulative error across multiple measurements points

EXTERNAL CALORIMETER COUPLING CAPABILITY

to increase your research options

Switzerland – France – China – United States – India – Hong Kong - www.setaramsolutions.com - setaram@kep-technologies.com

Setaram is a registered trademark of KEP Technologies Group