卡尔维量热仪家族

Celveł

应用：

- 吸附热
- 分解热
- 水化水解
- 反应机理
- 反应动力学
- 热失控
- 加压反应

卡尔维量热仪

室温～ $300^{\circ} \mathrm{C}$

卡尔维量热家族的扛把子，前生叫做 C80量热仪，是经典中的经典，多样化的样品池及精准数

据呈现，成为反应热动力学研究的绝佳拍档。

当时他和他的同事柯特用它来研究昆虫的新陈代谢。随后Tian 在 1924 年和 1926 年改进了这台基于热电偶的仪器。Tian 的继任者，Edouard CALVET 在 1948 年引入了差示设计，以及两个成对的量热元件结构的理论，并将Tian 的设备转化为一台真正的实验室仪器。

过程安全
过氧化二丁酯的分解在该池中进行－以 $0.1 \mathrm{~K} / \mathrm{min}$的速度加热样品 - 然后我们可以获得作为温度函数的热流和压力信号。达到的最高压力，压力分布以及冷却后的端部压力都是安全评估的宝贵数据。然后通过公许评估最大压力速率的推导来获得压力释放速率曲线。

比热容

$\square=305 \mathrm{~K} \times=315 \mathrm{k} \quad \mathrm{O}=325 \mathrm{k}+=335 \mathrm{k} \quad \triangle=340 \mathrm{k}$

材料：DME
温度：305K～365K
DME 在 305 K 至 365 K 温度范围内的比热

电池的发热量

Calvet 可以用于表征电池在充放电过程中的发热量，这对于电池的热设计和热管理特别重要。图中的例子是 18650 型锂电池不同温度下存储后，在恒定 45 mA 电流下的充放电电压和发热量。在高充电量区域，A 电池（50 度下存储）的发热量明显高于其他样品。

压力检测池

翻转混合池

安全池

气体循环池

- 样品区的高效凊准量热
- 专有耐㖞蚀合金及聚合物样品池
- 等温或扫棞模式
- 混合，捝拌，气体和液体流通
- 压力测量和控制

CALVET 高效量热 3 D 传感器由 2 个圆柱形的热电偶堆组成：每个热电偶堆有 9 个同心环，每个同心环又包含 19 对热电偶（每个热电偶堆包含 171 个热电偶），每个热电偶堆完全包围样品或参比区。

样品池可使用密封圆柱体标准样品池，也可以使用特诛设计的样品池以实现混合，捝柈，压力测量和气体／液体流通等功能，并可根据用户特殊需求定制新的样品池。通过特殊定制的样品池可实现卡尔维量热仪和其他分析仪器的联用，如吸脱附分析仪（BET 或 Sievert 高压气体吸附仪），气気控制系统（FLEXI－WET 湿度控制器或 FLEXI HP 高压气体面板）。

仪器参数

	Calvet
温度范围（ ${ }^{\circ} \mathrm{C}$ ）	室温～300
程控温度扫描速率（ ${ }^{\circ} \mathrm{C} / \mathrm{min}$ ）	$0.001 \sim 2$
分辨率（ $\mu \mathrm{W}$ ）	0.1
样品池容积（ml）	最大至 12.5 （标准池）
压力测量及控制（bar［psi］）	$\begin{gathered} 350[5,075] ; 600[8,700] ; \\ 1000[14,600] \end{gathered}$

Calvet HT

应用：

- 言压吸附
- 高压量热
- 高温反应

－高尿水合

环氧乙境热喼定性和夹控反应
利用 Calvet HT 微量热仪对环氧乙烷水溶液进行扫
描，得到了不同质量分数环氧乙烷水溶液的热流曲线，其中热流曲线峰面积代表反应热，通过对峰面积进行积分可得到体系的放热量。

Celvet Cryo

应用：

- 反应熱
- 愘喿热
- 低温比热
- 低温合成
- 低湿分解
- 水合物研究
温度 $T /{ }^{\circ} \mathrm{C}$

水合物
左图是典型THF 水合物的升降温热流曲线，可以非常灵敏的确定水合物和冰的形成和分解温度，以及生成热和分解热。据此可以进一步分析其他混合水合物体系的形成机理。

- 外围水线冷却
- 最高可达 $600^{\circ} \mathrm{C}$
- 等温或扫描模式
- 样品区的高效量热
- 专有 3D 卡尔维传感器

可使用 Calvet 的各类样品池，样品池及其附件均由耐腐蚀的合金及聚合物制成。
可实现混合，捝拌等功能，实现压力及真空，气体流量控制。

仪器参数

	Calvet HT
温度范围（ ${ }^{\circ} \mathrm{C}$ ）	室温～600
程控温度扫描速率（ ${ }^{\circ} \mathrm{C} / \mathrm{min}$ ）	$0.001 ~ 2$
分辨率 $(\mu \mathrm{WW})$	0.5
样品池容积（ml）	最大至 7
压力测量及控制（bar［psi］）	$100[1,450] ; 300[4,350] ;$
$400[5,800]$	

真空隔绝避免外部的水汽凝结。
可使用 Calvet 的各类样品池；可实现混合，捝拌等功能；可实现压力及真空，气体流量控制。

仪器参数

	Calvet Cryo
温度范围（ ${ }^{\circ} \mathrm{C}$ ）	$-196 \sim 200$
程控温度扫描速率（ ${ }^{\circ} \mathrm{C} / \mathrm{min}$ ）	$0.01 ~ 1$
分辨率 $(\mu \mathrm{HW})$	0.1
样品池容积（ml）	最大至 12.5 （标准池）
压力测量及控制（bar［psi］）	$100[1,450] ; 600[8,700] ;$
$1000[14,600]$	

Calveł Pro

$-120^{\circ} \mathrm{C} \sim 830^{\circ} \mathrm{C}$

卡尔维家族的传世经典，从 DSC111 到如今的 Calvet Pro，历经 50 余年，凭借研发工程沛匪夷所思的设计思路思维和创新思维，把一台卡尔维量热仪打造到当今工艺水平的极限。

应用：

- 水蒸气吸附
- 高压量热／DSC
- 高压超临界下量热
- 化学吸附－量热扩展
- 3 D 传感器的全温度段 DSC
- 热重扩展及相对应 BET，MS，FTIR 等气相扩展

不同压力下的 Tg 温度

弾性 O 型園在高压不铬钑样品池中以 $1 \mathrm{~K} / \mathrm{min}$ 的速率在 $-40^{\circ} \mathrm{C}$ 和 $20^{\circ} \mathrm{C}$ 之间升温沕试，由于弾性体的热容变化，可以在每个压力下确定玻犒化较变温度（ Tg ）。值得注意的是，Tg 随着压力的增加而增加，在 1 bar 和 400 bar 之间的偏移约 $10^{\circ} \mathrm{C}$ 。

Celveł ロC

室温～1500 ${ }^{\circ} \mathrm{C}$
前生叫 MHTC（多功能高温量热仪）高温滴落卡计。是法国塞塔拉姆独一无二的高温比热测量仪。

ThF4 的比热容测定

样品尺寸：$\Phi 6.5$＊H 16 mm
装样方式：量热仪整机置于手套箱内
测试气氛 ：Ar
温度程序：
阶梯法， 100 K 阶梯， $10 \mathrm{~K} / \mathrm{min}$
左图黑色实线为本实验的 Cp 实测曲线。

- 可实现压力及真空
- 3D 量热 DSC 的旷世杰作
- 全对称 TG 模块一悬挂式天平
- 多孔石英床一专为吸附／催化

提供 600 和 830 度两种炉体配置，Calvet Pro 集成三维传感器根据应用需求可进行垂直和水平模式切换操作满足不同进样需求。其测量灵敏度优于普通 DSC 至少 $1 \sim 2$ 个数量级同时能支持大样品量，高压及联用测试。

搭配无与伦比的 Setaram 经典悬挂式天平结构，能让你看到这个世界上最美的 TG 信号曲线和最佳的和气氛反应效果。其独有的全对称的炉体，可使样品和参比在完全相同的环境中加热及冷却，完全抵消浮力效应。

仪器参数

	Calvet Pro
温度范围（ ${ }^{\circ} \mathrm{C}$ ）	$\begin{gathered} \text { 室温~830 } \\ -120 \sim 200 \text { (带冷却装置) } \end{gathered}$
程控温度扫描速率（ ${ }^{\circ} \mathrm{C} / \mathrm{min}$ ）	$0.01 \sim 30$
分辨率（ $\mu \mathrm{W}$ ）	0．35； 0.035
样品池容积（ml）	最高可达 0.32 ，取决于所选的设计和材料 （铝，镍钴合金，石墨，氧化铝，铂等）
压力测量及控制（bar［psi］）	400 ［5，800］（测量及控制）； 500 ［7，250］（ 耐压）

结㧦参数及性能剖析—Calvet DC

- 带旋转式自动进样器
- 专为高温比热 Cp 而生
- 独有的 Drop 滴落模式
- DSC 或 Drop 量热传感器
- 3D 卡尔维高温量热传感器

三维传感器实现高温下的准确量热，轻松测定高温比热。

样品通过滴管滴落入放置熔剂的样品池中，在高温下轻松开展滴落实验，用于生成烚，混合烚的测定。

仪器参数

	Calvet DC	
	滴落式传感器	HF－DSC 传感器
温度范围（ ${ }^{\circ} \mathrm{C}$ ）	室温～1300 或 1500	室温～1400 或 1600
分䋨率（ H W ）	5	4
样品池容积（ml）	最大 5 （铂金煤埚）或者 5.7 （氧化铝坦埚）	最大 0.45

Microcalveł

Microcalvet 微量热仪 $-45^{\circ} \mathrm{C} \sim 120^{\circ} \mathrm{C}$

专门为水合物设计，性能功能樋盖 Microcalvet Ultra 的高性能微量热仪

Microcalveł Ultra

Microcalvet Ultra 微量热仪 $-20^{\circ} \mathrm{C} \sim 170^{\circ} \mathrm{C}$

生物级多功能微量热仪，内置 3 D 量热传感器能更精确可靠得获得多体系样品在不同温度程序下的热力学响应。

气体水合物平衡相图研究
高压微量热仪可原位表征气体水合物的生成和分解，获取热力学和动力学数据。左图为高压甲烷通入高压池内的典型热流测试曲线，在升温段的吸热峰可得到分解温度，从而构造水合物相图。其开放性设计还可以与拉曼等技术同步联用，是研究气体水合物的理想工具。

蛋白质变性的检测
lgG 溶液样品在哈氏合金密封容器的测试曲线显示，热流信号在表现出强烈的放热之前开始在吸热侧偏离，在放热之后，先前看到的吸热结束。在实验中，两种效应叠加：变性的吸热（b）和聚集的放热（c）。在分析后积分，获得 3．18 $\mathrm{J} /$ g 的变性热和 $1.66 \mathrm{~J} / \mathrm{g}$ 的聚集热。

结拘参数及性能剖析—Microcalvet

- 焦耳效应标定
- 瘋䖵和反应气氛
- 高压下的混合哷拌
- 3D 帕尔贴量热传感器
- 线性速率最低 $0.001 \mathrm{~K} / \mathrm{min}$

MicroCalvet 炉体和传感器的特殊设计，实现精确温度控制。

由耐腐蚀的合金及聚合制作的样品池可实现高压下混合，捝拌等功能，或进行压力及真空控制，或与体积法设备联用。

仪器参数

	Microcalvet
温度范围（ ${ }^{\circ} \mathrm{C}$ ）	$-45 \sim 120$
程控温度扫描速率 $\left({ }^{\circ} \mathrm{C} / \mathrm{min}\right)$	在 $0^{\circ} \mathrm{C}$ 以下冷却需要使用辅助恒温器
分辨率 $(\mu \mathrm{W})$	$0.001 \sim 2$
样品池容积 (ml)	$0.002 ; 0.02$
压力测量及控制 $(\mathrm{bar}[\mathrm{pss}])$	最大至 1 （标准池）
$400[500] ; 1000[14,600]$	

结㧦参数及性能剖析—Microcalvet Ultra

- 焦耳效应标定
- 高怯和反立气気

- 高压下的湜合営拌
- 3D 的尔贴量热传感器

MICROCALVET ULTRA 由基于导热液体的循环系统实现温度控制：流体由循环录控制首先进入控温腔，然后进入 3 D 传感器区域对样品区进行控温。

MICROCALVET 炉体设计可靠耐用，线性升降温速率最慢可达 $0.001^{\circ} \mathrm{C} / \mathrm{min}$ ，并可精确控制恒温。

仪器参数

	Microcalvet Ultra
温度范围（ ${ }^{\text {C }}$ ）	－20～170
程控温度扫描速率（ ${ }^{\circ} \mathrm{C} / \mathrm{min}$ ）	$0.001 \sim 1.2$
分辬率（ $\mu \mathrm{W}$ ）	0．0015；0．015
样品池容积（ml）	最大至1（标准池）
压力测量及控制（bar［psil）	400 ［5，800］

Calveł ロC Alexsus

t ，公差系数

Alexandra Navrotsky教授联合法国凯墡科技集团和共同设计制造，以 Navrosky教授名字命名：一款用来研究宇宙及地球起源物质形成机理的基础研究仪器。

Alexandra Navrotsky（1943年 6月 20日出生于纽约市）是纳米地球科学领域的物理化学家。她是美国国家科学院（NAS）和美国哲学学会（APS）委员。从 1995年到 2000年，她一直是美国国家科学院地球科
学与资源部的董事会成员。2005年，她被欧洲地球化学协会授予尤里奖章。2006年，她被美国地球物理联合会授予哈利 • H • 赫斯奖章。她目前是 NEATORU（环境，农业和技术组织研究单位的纳米材料）的主任。她是加州大学戴维斯分校的杰出教授。

关于 Navrotsky 教授的研究：主要从事宇宙材料交叉领域研究。从氧化物超导体到地幔深处的硅酸盐等一系列关于材料的研究（超过200篇论文）的基本问题是：为什么特定的成分，压力和温度成为给定的结构形成的原因？涉及以系统的方式关联表达热力学性质，结构参数和化学键的组成。曾分别在亚利桑那州立大学，普林斯顿大（1985－1997），加州大学戴维斯分校（1997以后）担任教授。Navrotsky构想了一个独特的高温量热装置，联合法国塞塔拉姆设计和改进了仪器，并开创和应用了测量晶体氧化物，玻璃，无定形，纳米相和多孔材料的能量学的方法，含水相和咴酸盐，以及最近的氮化物和氮氧化物。其中获得的热化学数据对于理解材料在技术和地质应用中的相容性和反应性至关重要，更根本的是，能量描述提供了对化学键合，有序无序反应和相变的深入了解。

售前咨询：400－068－6368
上海－北京－西安－广州
更多详情请登入：www．setaramsolutions．com 或 setaram＠kep－technologies．com

